On the Influence of Gravel Bed Dynamics on Velocity Power Spectra
نویسندگان
چکیده
[1] A series of flume experiments were conducted to study the effect of bed form dynamics on the flow over a gravel bed comprising a wide distribution of grain sizes. Instantaneous high‐frequency streamwise flow velocities were sampled using an acoustic Doppler velocimeter at a frequency of 200 Hz, while the simultaneous bed elevations were sampled using sonar transducers at a frequency of 0.2 Hz for a duration of 20 h. Spectral analysis of the measured velocity fluctuations reveals the existence of two distinct power law scaling regimes. At high frequencies, an inertial subrange of turbulence with ∼−5/3 Kolmogorov scaling is observed. At low frequencies, another scaling regime with spectral slope of about −1.1 is found. We interpret this range as the signature of the evolving multiscale bed topography on the near‐bed velocity fluctuations. The two scaling ranges are separated by a spectral gap, i.e., a range of intermediate scales with no additional energy contribution. The high‐frequency limit of the spectral gap corresponds to the integral scale of turbulence. The low‐frequency end of the gap corresponds to the scale of the smallest bed forms identified by the velocity sensor, which depends on the position of the sensor. Our results also show that the temporal scales of the largest bed forms can be potentially identified from spectral analysis of low‐resolution velocity measurements collected near the channel bed.
منابع مشابه
Despiking of Turbulent Flow Data in Gravel Bed Stream
Abstract—The present experimental study insights the decontamination of instantaneous velocity fluctuations captured by Acoustic Doppler Velocimeter (ADV) in gravel-bed streams to ascertain near-bed turbulence for low Reynolds number. The interference between incidental and reflected pulses produce spikes in the ADV data especially in the near-bed flow zone and therefore filtering the data are ...
متن کاملMultiscale statistical characterization of migrating bed forms in gravel and sand bed rivers
[1] Migrating bed forms strongly influence hydraulics, transport, and habitat in river environments. Their dynamics are exceedingly complex, making it difficult to predict their geometry and their interaction with sediment transport. Acoustic instrumentation now permits high-resolution observations of bed elevation as well as flow velocity. We present a space-time characterization of bed elevat...
متن کاملCFD Simulation of Porosity and Particle Diameter Influence on Wall-to-Bed Heat Transfer in Trickle Bed Reactors
Wall-to-bed (or wall-to-fluid) heat transfer issues in trickle bed reactors (TBR) has an important impact on operation and efficiency in this category of reactors. In this study, the hydrodynamic and thermal behavior of trickle bed reactors was simulated by means of computational fluid dynamics (CFD) technique. The multiphase behavior of trickle bed reactor was studied by the implementation of ...
متن کاملThe influence of migrating bed forms on the velocity-intermittency structure of turbulent flow over a gravel bed
[1] Modeling turbulent flows at high Reynolds number requires solving simplified variants of the Navier-Stokes equations. The methods used to close the resulting Reynolds-averaged, or eddy simulation equations usually follow classical theory and, at small enough scales, postulate universal scaling for turbulence that is independent of the velocity itself. This may not be the best way to concept...
متن کاملPredicting the Hydraulic and Morphological Conse- quences of River Rehabilitation
Decisions about flood protection and river rehabilitation require prediction of the consequences of each possible management alternative. To provide such predictions, an integrative model is required that represents the cause-effect relations between revitalisation measures and morphologic, hydraulic and ecological consequences. This paper describes the hydraulics submodel of such an integrativ...
متن کامل